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Abstract

Large-scale computational models have become common tools for analyzing complex man-
made systems. However, when coupled with optimization or uncertainty quantification methods
in order to conduct extensive model exploration and analysis, the computational expense quickly
becomes intractable. Furthermore, these models may have both continuous and discrete parame-
ters. One common approach to mitigating the computational expense is the use of response surface
approximations. While well developed for models with continuous parameters, they are still new
and largely untested for models with both continuous and discrete parameters. In this work, we
describe and investigate the performance of three types of response surfaces developed for mixed-
variable models: Adaptive Component Selection and Shrinkage Operator, Treed Gaussian Process,
and Gaussian Process with Special Correlation Functions. We focus our efforts on test problems
with a small number of parameters of interest, a characteristic of many physics-based engineering
models. We present the results of our studies and offer some insights regarding the performance of
each response surface approximation method.
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Chapter 1

Introduction

Heterogeneous system of systems (HSoS) models have emerged as a promising approach for de-
scribing large, complex systems with distinct, independent subsystems. However, the current
methods for analyzing such large-scale models with data and scenario uncertainties are compu-
tationally expensive. The overall goal of LDRD Project 09-0372, “Optimization of Large-Scale
Heterogeneous System-of-Systems Models”, was to develop approaches and tools for predicting
and planning future behavior of complex man-made systems using these large-scale system mod-
els. More specifically, the focus was to develop optimization methods that exploit mathematical
structure inherent in the HSoS models in order to efficiently analyze them.

One key to successfully realizing this goal involves the construction of surrogates for the com-
putationally expensive models. A surrogate can take many forms, but in this context we mean
a meta-model or response surface approximation built from a limited amount of data generated
by the computationally expensive model. The purpose of the surrogate model is to increase the
efficiency of analyses that require frequent model interrogations such as optimization and uncer-
tainty quantification, thereby improving the tractability of these simulation-based analyses. The
particular challenge we address in this work is developing surrogates for models that have both
continuous and discrete variables.

There are two classes of models that have discrete and continuous variables that are of interest
to us:

Engineering Models The engineering models typically involve a small number of variables of
interest (e.g. tens of variables), but are characterized by computationally expensive equation
solvers, such as partial differential equation solvers to model heat transfer, shock physics,
etc. Many of the variables are continuous, but there can be discrete variables that represent
modeling choices (alternative plausible models) and design choices (e.g. discrete choices of
materials, components, or operational settings).

Large scale HSoS models These models simulate the behavior of complex systems such as the
electric power grid, the transportation system, and logistics systems. These models are typ-
ically composed of many constitutive system models, and may have very large numbers of
discrete and continuous variables. Discrete variables may represent quantities such as in-
ventory levels, yes/no decisions, number of units transferred from one point in a network to
another, etc.
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The main focus of our work has been on the first class of models, Engineering Models. Scal-
ability remains a key challenge for developing mixed variable surrogates for large-scale HSoS
models.

The major challenge in using surrogates for mixed variable problems is the discrete variables.
Typically, in surrogate models constructed over continuous variables, there is the assumption of
continuity: as a continuous variable varies by a small amount, the response is assumed to vary
smoothly. This is not always the case, and there are surrogate methods that can handle disconti-
nuities in responses, but most surrogates (e.g. polynomial regression, splines, Gaussian process
models, etc.) rely on assumptions of continuity.

With discrete variables, we do not necessarily have continuous behavior. For example, if one
is varying a logistics system having two service centers to three service centers, the behavior of
the system in terms of response time, average numbers of customers in a queue, etc. may be quite
different. Similarly, if a discrete variable representing a design choice varies from choice A to
choice B, the system may respond in a fundamentally different manner. In the worst case scenario,
we would need to construct a separate surrogate model for each combination of the discrete variable
settings. This can be very computationally expensive itself.

In this work, we consider three approaches for constructing mixed variable surrogates. They
have their roots in response surface modelling for continuous problems and tractably incorporate
discrete variables based in a manner that relies on some simplifications and additional assumptions.

1.1 Related Work

The analysis of many physical and engineering problems involves running complex computational
models. With problems of this type, it is important to understand the relationships between the
input variables, whose values are often imprecisely known, and the output. However, a computa-
tional model that sufficiently represents reality is often very costly to run. Thus, there has been a
strong interest to develop “emulators” or “metamodels” which are surrogate models of the simula-
tion (e.g. a statistical model of the simulator output).

When the models are computationally demanding, meta-model approaches to their analysis
have been shown to be very useful. For example, one standard approach in the literature is to de-
velop an emulator that is a stationary smooth Gaussian process[20, 10, 21]. There are many good
overview articles which compare various metamodel strategies. For example, Storlie et al. com-
pare various smoothing predictors and nonparametric regression approaches in [26, 27]. Simpson
et al. provide an excellent overview not just of various statistical metamodel methods but also ap-
proaches which use low-fidelity models as surrogates for high fidelity models [23]. This paper also
addresses the use of surrogates in design optimization, which is a popular research area for compu-
tationally expensive disciplines such as computational fluid dynamics in aeronautical engineering
design. Haftka and his students developed an approach which uses “ensembles” of emulators or
hybrid emulators [31, 30]. The advantage of these types of hybrid or ensembles of emulators is
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that better performance can be obtained. For example, one can select the best surrogate for various
features or responses, or one can use weighted model averaging of surrogates.

Generally, the metamodels utilized in surrogate modeling do not explicitly allow for categor-
ical input variables. Hence, they must be handled in one of two ways. One option is to order
these categorical inputs in some way and treat them as continuous variables when creating a meta-
model. In some cases, this can lead to undesireable and misleading results. The other option is
categorical regression. In this approach, a separate surrogate model is constructed over the con-
tinuous variables for each possible combination of the discrete variable values. This approach has
the advantage that the surrogate is only constructed on the continuous variables, conditional on a
particular combination of discrete values. This approach may work fine if there are only a few dis-
crete variable with a few values, but will quickly become infeasible as one increases the number of
discrete variables and/or the number of levels per variable [15]. It is clear that a more appropriate
and efficient treatment of categorical inputs is needed.

The remaining sections of this report are as follows. Section 2 outlines three approaches for
constructing mixed variable surrogates. Section 3 describes a testbed that we developed for the
purposes of testing the approaches. Section 4 provides results of the surrogates on several test
problems, and Section 5 summarizes the outcome.
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Chapter 2

Mixed Surrogate Approaches

This chapter describes four classes of methods that we investigated to generate surrogate models
for mixed discrete-continuous variable problems. These four classes of methods are:

ACOSSO: ACOSSO, the Adaptive COmponent Selection and Smoothing Operator, is a special-
ized smoothing spline model[25]. It uses the smoothing spline ANOVA decomposition to
separate the underlying function into simpler functional components (i.e., main effects, two-
way interactions, etc.) then explicitly estimates these functional components in one op-
timization. The estimation proceeds by optimizing the likelihood subject to a penalty on
each of the functional components. Each component involving continuous predictors has a
penalty on its roughness and overall trend, each component involving discrete predictors has
a penalty on its magnitude (L2 norm), while interaction components involving both discrete
and continuous predictors receive a combination of these penalties.

Gaussian Processes with special correlation functions: Gaussian process models are powerful
emulators for computer models. A Gaussian process model is defined by its mean and co-
variance function. The covariance function specifies how the response between two points
is related: the idea is that points close together in input space will tend to have responses
that are similar. Typically, the covariance function is a function of the distance between
the points. Qian et al. have studied a variety of covariance functions that represent the co-
variance between discrete points [17][34]. They provide several correlation functions that
are appropriate to use for mixed variable problems: we investigated the exchangeable cor-
relation (EC), the multiplicative correlation (MC), and the unrestricted correlation function
(UC). For comparison, we also looked at the Individual Kriging (IK) model which involves
constructing a separate Gaussian process surrogate over the continuous variables for each
combination of discrete variables. This is similar to categorical regression. Finally, we
looked at both Gaussian correlation functions which are most typically used in Gaussian
process models and the Wendland correlation function, which has compact support.

TGP: TGP, the treed Gaussian Process model, is an approach which allows different Gaussian
process models (GPs) to be constructed on different partitions of the space [5][6]. This ap-
proach naturally lends itself to discrete variables, where the partitioning can be done between
different values or sets of discrete variables. In TGP, the discrete or categorical variables are
converted to a series of binary variables. The binary variables are then what are partitioned
upon: they become the “nodes” of the tree [7].
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2.1 Adaptive COmponent Selection and Shrinkage Operator
(ACOSSO)

The Adaptive COmponent Selection and Shrinkage Operator (ACOSSO) estimate [25] was devel-
oped under the smoothing spline ANOVA (SS-ANOVA) modeling framework. As it is a smoothing
type method, ACOSSO works best when the underlying function is somewhat smooth. The type of
splines we are using involve the minimization of an objective function involving a sum-of-squares
error term, similar to regression modeling. However, in the objective function for the splines, there
are additional terms which can be viewed as regularization terms: these penalty terms help smooth
the function and they also help perform variable selection. In the ACOSSO implementation, there
is a penalty on functions of the categorical predictors. This penalty formulation provides a variable
selection and automatic model reduction: it encourages some of the terms in the objective function
to be zero, removing certain discrete variables or levels of discrete variables from the formulation.
To facilitate the description of ACOSSO, we first review the univariate smoothing spline. We then
describe the extension to multiple inputs while assuming that the predictors are continuous. Lastly,
we introduce the treatment of categorical predictors and the ACOSSO estimator.

Univariate Smoothing Splines. Let xn, n = 1, . . . ,N, denote the nth observation of a univariate
predictor x and let yn = f (xn) + εn denote the observed output from a model f , where εn is an
error term which may account for errors (usually small) incurred by the numerical method used to
solve for f . Without loss of generality, we restrict attention to the domain [0,1]. We can always
rescale the input x to this domain via a transformation. Assume that the unknown function f to be
estimated belongs to 2nd order Sobolev space S 2 = { f : f , f ′ are absolutely continuous and f ′′ ∈
L 2[0,1]}. The smoothing spline estimate is given by the element f ∈S 2 that minimizes

1
n

N

∑
n=1

[yn− f (xn)]
2 +λ

∫ 1

0

[
f ′′(x)

]2 dx. (2.1.1)

The penalty term on the right of (2.1.1) is an overall measure of the magnitude of the curvature
(roughness) of the function over the domain. Thus, the tuning parameter λ controls the trade-off in
the resulting estimate between smoothness and fidelity to the data; large values of λ will result in
smoother functions while smaller values of λ result in rougher functions that more closely match
the data. Generally, λ is chosen by generalized cross validation (GCV) [3], m-fold CV [11], or
related methods ([4], pp. 239-243 and [9], pp. 42-52). The minimizer of Eq. (2.1.1) is technically
called the cubic smoothing spline because the solution can be shown to be a natural cubic spline
with knots at all of the distinct values of xn, n = 1, . . . ,N ([4], p. 230).

Multivariate Smoothing Splines. Now consider a vector of predictors x = [x1, . . . ,xI]′. The
simplest extension of smoothing splines to multiple inputs is the additive model [9]. For instance,
assume that

f ∈Fadd = { f : f (x) =
I

∑
i=1

gi(xi),gi ∈S 2}, (2.1.2)

i.e., f (x) = ∑
I
i=1 gi(xi) is a sum of univariate functions. Let xn = [xn,1, . . . ,xn,I]′ be the nth observa-

tion of a multivariate predictor x, n = 1, . . . ,N, and yn = f (xn)+εn. The additive smoothing spline

16



estimate of f is the minimizer of

1
n

N

∑
n=1

[yn− f (xn)]
2 +

I

∑
i=1

λi

∫ 1

0

[
g′′i (xi)

]2 dxi (2.1.3)

over f ∈Fadd . The minimizer of the expression in Eq. (2.1.3), f̂ (x) = ∑
I
i=1 ĝi(xi), takes the form

of a natural cubic spline for each of the functional components ĝi. Notice that there are I tuning
parameters (λi) for the additive smoothing spline. These are generally determined via some form
of cross-validation. A generalization to two-way and higher order interaction functions can also
be achieved in a similar manner; see [25] for the full details of including interactions in the SS-
ANOVA framework. The minimizer of the expression in Eq. (2.1.3) can be obtained in an efficient
manner via matrix algebra using results from reproducing kernel Hilbert space (RKHS) theory; for
details see [32] or [8].

Discrete Predictors. A large advantage to the SS-ANOVA framework is the ability to handle
categorical predictors with relative ease. To facilitate the discussion, we generalize our notation to
the following. Assume that x = [x1, . . . ,xI]′ are continuous on [0,1] as previously in this section,
while z = [z1, . . . ,zJ]′ are unordered discrete variables, and let the collection of the two types of
predictors be denoted w = [x′,z′]′. For simplicity, assume z j ∈ {1,2, . . . ,b j} for j = 1, . . . ,J where
the ordering of the integers representing the groups for z j is completely arbitrary. For notational
convenience, let Gi = S 2 for i = 1, . . . , I. Also let the class of L 2 functions on the domain of z j
(i.e., {1,2, . . . ,b j}) be denoted as H j for j = 1, . . . ,J.

For simplicity, we can once again consider the class of additive functions,

Fadd = { f : f (w) =
I

∑
i=1

gi(xi)+
J

∑
j=1

h j(z j), gi ∈ Gi, h j ∈H j}. (2.1.4)

Let wn = [xn,1, . . . ,xn,I,zn,1, . . . ,zn,J]′ be the nth observation of a multivariate predictor w. The
traditional additive smoothing spline is then the minimizer of

1
N

N

∑
n=1

[yn− f (wn)]
2 +

I

∑
i=1

λi

∫ 1

0

[
g′′i (xi)

]2 dxi (2.1.5)

over f ∈Fadd . Notice that in the traditional smoothing spline in (2.1.5) there is no penalty term
on the functions of the categorical predictors (h j).

Generalizing to the ACOSSO estimate. The COmponent Selection and Shrinkage Operator
(COSSO) [12] penalizes on the sum of the semi-norms instead of the squared semi-norms as in
Eq. (2.1.5). A semi-norm is a norm which can assign zero to some nonzero elements of the space,
or alternatively can usually be thought of as a norm on a subset of the full space. In this case, all
functions with zero second derivative (i.e., linear functions) will have zero penalty (i.e., semi-norm
equal to zero). For ease of presentation, we will continue to restrict attention to the additive model.
However, all of the following discussion applies directly to the two-way (or higher) interaction
model as well.
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The additive COSSO estimate, f̂ (w) = ∑ ĝi(xi)+ ∑ ĥ j(z j), is given by the function f ∈Fadd
that minimizes

1
N

N

∑
n=1

[yn− f (wn)]
2 +λ1

I

∑
i=1

{[∫ 1

0
g′i(xi)dxi

]2

+
∫ 1

0

[
g′′i (xi)

]2 dxi

}1/2

+λ2

J

∑
j=1

{
b j

∑
z j=1

h2
j(z j)

}1/2

.

(2.1.6)
There are four key differences in the penalty term in Eq. (2.1.6) relative to the additive smoothing

spline of Eq. (2.1.5). First, there is an additional term
[∫ 1

0 g′i(xi)dxi

]2
in the penalty for continu-

ous predictor functional components, which can also be written [gi(1)−gi(0)]2, that penalizes the
magnitude of the overall trend of the functional components gi that correspond to continuous pre-
dictors. Second, there is now a penalty on the L 2 norm of the h j that correspond to the categorical
predictors. Third, in contrast to the squared semi-norm in the additive smoothing spline, each term
in the sum in the penalty in Eq. (2.1.6) can be thought of as a semi-norm over functions gi ∈ Gi
or h j ∈H j, respectively, (only constant functions have zero penalty). This has a similar effect to
the Least Absolute Selection and Shrinkage Operator (LASSO) [29] for linear models in that it
encourages some of the terms in the sum to be exactly zero. These terms are semi-norms over the
gi (or h j); when such zeros result, ĝi (or ĥ j) is set to a constant, thus removing xi (or z j) from the
estimate and providing automatic “model” selection/reduction. Fourth, the COSSO penalty only
has two tuning parameters (three if two-way interactions are included), which can be chosen via
GCV or similar means. This differs from the original COSSO [12] (i.e., all continuous predictors)
where there is only one tuning parameter. It can be demonstrated analytically in that case, that the
COSSO penalty with one tuning parameter gives as much flexibility as the penalty on the corre-
sponding squared norms with I tuning parameters [12]. A similar flexibility is also true with the
two tuning parameters in the mixed discrete/continuous predictor estimator of Eq. (2.1.6).

Finally, ACOSSO is a weighted version of COSSO, where a rescaled semi-norm is used as the
penalty for each of the functional components. Specifically, we select as our estimate the function
f ∈Fadd that minimizes

1
N

N

∑
n=1

[yn− f (wn)]
2+λ1

I

∑
i=1

vi

{[∫ 1

0
g′i(xi)dxi

]2

+
∫ 1

0

[
g′′i (xi)

]2 dxi

}1/2

+λ2

J

∑
j=1

w j

{
b j

∑
z j=1

h2
j(z j)

}1/2

,

(2.1.7)
where the vi,w j, 0 < vi,w j ≤ ∞, are weights that can depend on an initial estimate of f which we
denote f̃ . Our implementation of ACOSSO takes f̃ to be the COSSO estimate of Eq. (2.1.6), in
which λ1 and λ2 are chosen by the GCV criterion. We then use

vi =
[∫ 1

0
g̃2

i (xi)dxi

]−1

for i = 1, . . . , I

w j =

(
1
b j

b j

∑
z j=1

h̃2
j(z j)

)−1

for j = 1, . . . ,J. (2.1.8)

This allows for more flexible estimation (less penalty) on the functional components that show
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more signal in the initial estimate. As shown in [25], this approach results in better performance
on many test cases and more favorable asymptotic properties than COSSO.

The minimizer of the expression in Eq. (2.1.7) is obtained using an iterative algorithm and a
RKHS framework similar to that used to find the minimizer of Eq. (2.1.5) in [32] and [8]. The op-
timization problem for the two-way interaction model can be posed in a similar way to Eq. (2.1.7);
see [25] for more details on the interaction model and the computation of the solution. The two-
way interaction model is used in the results of Chapter 4.

2.2 Gaussian Processes for Models with Quantitative and Qual-
itative Factors

This section describes a computationally efficient method developed in Zhou, Qian, and Zhou[34]
for fitting Gaussian process models with quantitative and qualitative factors proposed in Qian, Wu,
and Wu[17]. Consider a computer model with inputs w = (xt ,zt)t , where x = (x1, . . . ,xI)t consists
of all the quantitative factors and z = (z1, . . . ,zJ)t consists of all the qualitative factors with z j
having b j levels. The number of the qualitative levels of z is given by

m =
J

∏
j=1

b j. (2.2.9)

Throughout, the factors in z are assumed to be qualitative but not ordinal. Gaussian process models
with ordinal qualitative factors can be found in Section 4.4 of [17]. The response of the computer
model at an input value w is modeled as

y(w) = ft(w)βββ + ε(w), (2.2.10)

where f(w) = [ f1(w), . . . , fp(w)]t is a set of p user-specified regression functions, βββ = (β1, . . . ,βp)t

is a vector of unknown coefficients and the residual ε(w) is a stationary Gaussian process with
mean 0 and variance σ2. The model in (2.2.10) has a more general form than the standard Gaussian
process model with only quantitative factors x given by

y(x) = ft(x)βββ + ε(x), (2.2.11)

where f(x) = [ f1(x), . . . , fp(x)]t is a set of p user-specified regression functions depending on x
only, βββ = (β1, . . . ,βp)t is a vector of unknown coefficients, and the residual ε(x) is a stationary
Gaussian process with mean 0, variance σ2 and a correlation function for x.

For m in (2.2.9), let c1, . . . ,cm denote the m qualitative levels of z and let w = (xt ,cq)t (q =
1, . . . ,m) denote any input value. For two input values w1 = (xt

1,c1)t and w2 = (xt
2,c2)t , the

correlation between y(w1) and y(w2) is defined to be

cor [ε(w1),ε(w2)] = τc1,c2ϕ(x1,x2), (2.2.12)
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where ϕ is the correlation function for the quantitative factors x in the model (2.2.10) and τc1,c2

is the cross-correlation between the qualitative levels c1 and c2. The choice of ϕ is flexible. Two
popular choices are the Gaussian correlation function [21]

ϕ(x1,x2) = exp

{
−

I

∑
i=1

φi(x1i− x2i)2

}
(2.2.13)

and the spherical correlation function

ϕ(x1,x2) =
I

∏
i=1

(1−1.5ξi +0.5ξ
3
i ), (2.2.14)

where ξi = min{1,φi|x1i− x2i|}. To achieve numerical stability for the correlation matrix R in
(2.2.10) with large size, one can also consider the Wendland’s compactly supported correlation
function [33]

ϕ(x1,x2) = (1− r)l+2
+
[
(l2 +4l +3)r2 +(3l +6)r +3

]
/3, (2.2.15)

where r =
√

∑
I
i=1 φi(x1i− x2i)2 and l = bI/2c+ 3. The notation (1− r)+ means that if (r > 1),

then (1− r)+ = 0, otherwise (1− r)+=(1− r). The unknown roughness parameters φi in (2.2.13),
(2.2.14) or (2.2.15) will be collectively denoted as ΦΦΦ = {φi}. The m×m matrix T = {τr,s}, with
entries being the cross-correlations among the qualitative levels, must be positive definite with
unit diagonal elements in order for (2.2.12) to be a valid correlation function. This condition
can be achieved in two ways. One way is to use the semi-definite programming techniques with
positive definiteness constraints [17], which are computationally intensive. [34] provides a more
efficient way for modeling T by using the hypersphere decomposition, originally introduced for
modeling correlations in financial applications [18]. This method first applies a Cholesky-type
decomposition to T

T = LLt , (2.2.16)

where L = {lr,s} is a lower triangular matrix with strictly positive diagonal entries. Then, let
l1,1 = 1 and for r = 2, . . . ,m, consider a spherical coordinate system

lr,1 = cos(θr,1),
lr,s = sin(θr,1) · · ·sin(θr,s−1)cos(θr,s), for s = 2, . . . ,r−1,

lr,r = sin(θr,1) · · ·sin(θr,r−2)sin(θr,r−1),
(2.2.17)

where θr,s ∈ (0,π). Denote by ΘΘΘ all θr,s involved in (2.2.17).

Suppose that the computer model under consideration is conducted at n different input val-
ues, Dw = (w0

1, . . . ,w
0
n), with the corresponding response values denoted by y = (y1, . . . ,yn)t . The

parameters in model (2.2.10) to be estimated are σ2, βββ , ΦΦΦ and ΘΘΘ. The maximum likelihood estima-
tors of these parameters are denoted by σ̂2, β̂ββ , Φ̂ΦΦ and Θ̂ΘΘ, respectively. The log-likelihood function
of y, up to an additive constant, is

−1
2
[
n log(σ2)+ log(|R|)+(y−Fβ )tR−1(y−Fβ )/σ

2] , (2.2.18)
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where F =
[
f(w0

1), . . . , f(w
0
n)
]t is an n× p matrix and R is the correlation matrix with (i, j)th entry

cor
[
ε(w0

i ),ε(w0
j)
]

defined in (2.2.12). Given ΦΦΦ and ΘΘΘ, β̂ββ and σ̂2 are

β̂ββ = (FtR−1F)−1FtR−1y, (2.2.19)

and
σ̂

2 = (y−Fβ̂ββ )tR−1(y−Fβ̂ββ )/n. (2.2.20)

Plugging (2.2.19) and (2.2.20) into (2.2.18), Φ̂ΦΦ and Θ̂ΘΘ can be obtained as

(Φ̂ΦΦ,Θ̂ΘΘ) = argmin
ΦΦΦ,ΘΘΘ
{n log(σ̂2)+ log(|R|)}. (2.2.21)

The optimization problem in (2.2.21) only involves the constraints that θr,s ∈ (0,π) for Θ̂ΘΘ and
φi ≥ 0 for Φ̂ΦΦ. It can be solved by modifying the DACE toolbox in Matlab [13] to incorporate the
reparameterization in (2.2.17). A small nugget term is added to the diagonals of R to mitigate
potential singularity. The fitted model can be used to predict the response value y at any untried
input value. Given σ̂2, β̂ββ , Φ̂ΦΦ and Θ̂ΘΘ, the empirical best linear unbiased predictor (EBLUP) of y at
any input value w0 is

ŷ(w0) = ft(w0)β̂ββ + r̂t
0R̂−1(y−Fβ̂ββ ), (2.2.22)

where r̂0 =
{

cor
[
ε(w0

0),ε(w0
1)
]
, . . . ,cor

[
ε(w0

0),ε(w0
n)
]}t and R̂ is the estimated correlation ma-

trix of y. Similarly to its counterpart for the Gaussian process model in (2.2.11) with quantitative
factors, the EBLUP in (2.2.22) smoothly interpolates all the observed data points. Features of the
function ŷ(w) can be visualized by plotting the estimated functional main effects and interactions.
Details of performing ANOVA decompositions can be found in [21].

In this work, we consider four methods for building Gaussian process models for a computer
experiment with qualitative and quantitative factors.

• The individual Kriging method, denoted by IK. This method fits data associated with differ-
ent qualitative levels separately using distinct Gaussian process models for the quantitative
variables in (2.2.11).

• The exchangeable correlation method for the qualitative factors, denoted by EC. It assumes
the cross-correlation τr,s in (2.2.12) to be

τr,s = c (0 < c < 1) for r 6= s.

• The multiplicative correlation method for the qualitative factors, denoted by MC. It assumes
the cross-correlation τr,s in (2.2.12) to be

τr,s = exp{−(θr +θs)I[r 6= s]} (θr,θs > 0).

• The method proposed in (2.2.16) and (2.2.17) with an unrestricted correlation function for
the qualitative factors, denoted by UC.
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2.3 Treed Gaussian Processes (TGP)

In practice, many situations involving the emulation of computer models call for more flexibility
than is reasonable under the common assumption of stationarity. However, a fully nonstationary
model may be undesirable as well, because of the vastly increased difficulty of performing infer-
ence due to a nonstationary model’s complexity. A good compromise can be local stationarity.
A treed Gaussian process (TGP) (Gramacy and Lee, 2008) is designed to take advantage of local
stationarity. It defines a treed partitioning process on the predictor space and fits distinct, but hier-
archically related, stationary GPs to separate regions at the leaves. The treed form of the partition
makes the model easily interpretable: having the treed partitions with separate GPs makes it easy
to identify the GP model in each branch. At the same time, the partitioning results in smaller
matrices for inversion than would be required under a standard GP model and thereby provides
a nonstationary model that actually facilitates faster inference. Using a fully Bayesian approach
allows for model averaging across the tree space, resulting in smooth and continuous fits when
the data are not naturally partitioned. The partitions are fit simultaneously with the individual GP
parameters using reversible jump Markov chain Monte Carlo, so that all parts of the model can be
learned automatically from the data. The posterior predictive distribution thus takes into account
uncertainty from the data, from the fitted parameters, and from the fitted partitions.

TGP inherits its partitioning scheme from simpler treed models such as CART (Breiman et al.,
1984) and BCART (for Bayesian CART) (Chipman et al., 1998, 2002). Each uses recursive binary
splits so that each branch of the tree in any of these models divides the predictor space in two,
with multiple splits allowed on the same variable for full flexibility. Consider predictors x ∈ RP

for some split dimension p ∈ {1, ...,P} and split value v, points with xp ≤ v are assigned to the
left branch, and points with xp > v are assigned to the right branch. Partitioning is recursive and
may occur on any input dimension p, so arbitrary axis-aligned regions in the predictor space may
be defined. Conditional on a treed partition, models are fit in each of the leaf regions. In CART
the underlying models are constant in that only the mean and standard deviation of the real-valued
outputs are inferred. TGP fits a Gaussian process Zν in each leaf ν using the following hierarchical
model:

Zν |β ν ,σ2
ν ,Kν ∼ Nnν

(Fνβ ν ,σ2
ν Kν) β 0 ∼ Nm(µµµ,B) σ

2
ν ∼ IG(ασ/2,qσ/2) (2.3.23)

β ν |σ2
ν ,τ2

ν ,WWW ,β 0 ∼ Nm(β 0,σ
2
ν τ

2
νW) W−1 ∼W ((ρV)−1,ρ) τ

2
ν ∼ IG(ατ/2,qτ/2)

where FFFν = (111,XXXν) contains the data in that leaf. N, IG, and W are the Multivariate Normal,
Inverse–Gamma, and Wishart distributions, respectively. KKKν is the separable power family covari-
ance matrix with a nugget.

Classical treed methods, such as CART, can cope quite naturally with categorical, binary, and
ordinal inputs. For example, categorical inputs can be encoded in binary, and splits can be pro-
posed with rules such as xp < 1. Once a split is made on a binary input, no further process is
needed, marginally, in that dimension. Ordinal inputs can also be coded in binary, and thus treated
as categorical, or treated as real-valued and handled in a default way. This formulation presents
an alternative to that of Section 2.2. While that formulation allows a powerful and flexible repre-
sentation of qualitative inputs in the model, it does not allow for nonstationarity. TGP allows the
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combination of qualitative inputs and nonstationary modeling.

Rather than manipulate the GP correlation to handle categorical inputs, the tree presents a more
natural mechanism for such binary indicators. That is, they can be included as candidates for treed
partitioning but ignored when it comes to fitting the models at the leaves of the tree. They must be
excluded from the GP model at the leaves since, if ever a Boolean indicator is partitioned upon, the
design matrix (for the GP or LM) would contain a column of zeros or ones and therefore would
not be of full rank. The benefits of removing the Booleans from the GP model(s) go beyond pro-
ducing full-rank design matrices at the leaves of the tree. Loosely speaking, removing the Boolean
indicators from the GP part of the treed GP gives a more parsimonious model. The tree is able to
capture all of the dependence in the response as a function of the indicator input, and the GP is the
appropriate nonlinear model for accounting for the remaining relationship between the real-valued
inputs and outputs. Further advantages to this approach include speed (a partitioned model gives
smaller covariance matrices to invert) and improved mixing in the Markov chain when a separable
covariance function is used since the size of the parameter space defining the correlation structure
would remain manageable. Note that using a non-separable covariance function in the presence of
indicators would result in a poor fit. Good range (d) settings for the indicators would not necessar-
ily coincide with good range settings for the real-valued inputs. Finally, the treed model allows the
practitioner to immediately ascertain whether the response is sensitive to a particular categorical
input by tallying the proportion of time the Markov chain visited trees with splits on the corre-
sponding binary indicator. A much more involved Monte Carlo technique (e.g., following Saltelli
et al., 2008) would otherwise be required in the absence of the tree. If it is known that, conditional
on having a treed process for the binary inputs (encoding categories), the relationship between the
remaining real-valued inputs and the response is stationary, then we can improve mixing in the
Markov chain further by ignoring the real valued inputs when proposing tree operations. Here we
use the implementation developed by Broderick and Gramacy (2011).
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Chapter 3

Testing and Assessment Approach

In order to evaluate and compare the four mixed-variable surrogate modeling approaches, we es-
tablished a common experimental strategy that can be consistently applied to all of them. There
are three primary components to which we paid particular attention. They are the test functions,
the sample design used for surrogate construction, and the performance metrics. Each is described
in the following subsections.

3.1 Test Functions

One gap we identified when collecting test functions on which to evaluate the four mixed-variable
surrogate methods was the absence of a portable testbed that was easy to interface with all of
the code implementations under consideration. In addition, we wanted a testbed that was generic
enough to be re-used by ourselves and others to evaluate methods developed in the future. To these
ends, we established a set of requirements for the testbed that include the following:

• fast-running evaluations in order to obtain results in a timely manner

• easy to compile, cross-platform compatibility for portability to a variety of computing plat-
forms

• extendable in order to easily add new functions

• file-based input and output to provide a single easy interface to a variety of surrogate mod-
eling, optimization, and uncertainty quantification software

• ability to control the number of discrete variables and the number of levels per discrete
variable in order to test method scalability with respect to these features

• ability to control problem complexity in order to evaluate performance on a variety of prob-
lems

To meet our requirements, we developed a C++ testbed that can be made available to others
who wish to perform similar testing. It can be compiled on any computing platform with standard
C++ compilers. It reads a simple text input file that contains a list of parameter values and produces
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a similar output file containing the corresponding function response. New functions can be added
by writing a short C++ evaluate method for that function. The testbed in its current form consists of
a set of defined functions and a polynomial generator that provide a range of fast-running functions
with a variety of features. Both classes of functions are described further below.

3.1.1 Defined Functions

The first function we considered in our numerical experiments has one categorical variable with
five levels. It also two continuous variables, both of which fall between the values of 0 and 1.
This function has regions where the responses at the different categorical levels are very similar.
This will allow us to evaluate how well the different surrogate approaches can resolve the different
levels.

f (x) =


sin(2πx3−π)+7sin2(2πx2−π) if x1 = 1

sin(2πx3−π)+7sin2(2πx2−π)+12.0sin(2πx3−π) if x1 = 2
sin(2πx3−π)+7sin2(2πx2−π)+0.5sin(2πx3−π) if x1 = 3
sin(2πx3−π)+7sin2(2πx2−π)+8.0sin(2πx3−π) if x1 = 4
sin(2πx3−π)+7sin2(2πx2−π)+3.5sin(2πx3−π) if x1 = 5

Figure 3.1. Test Function 2

The second function we considered is the Goldstein-Price function. It has one continuous
variable and one discrete variable. The discrete variable, x1, can take on the values of −2,0, and
2. The continuous variable, x2, ranges between the values of −2 and 2. It has notable parameter
interactions, and the response spans multiple orders of magnitude.

f (x) = (1+(x1 + x2 +1)2 ∗ (19−14x1 +3x2
1−14x2 +6x1x2 +3x2

2))∗
(30+(2x1−3x2)2 ∗ (18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2))
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Figure 3.2. Goldstein Price Function

The testbed includes two other defined functions. We do not present results associated with
these functions, however, so we defer their descriptions to Appendix A.

3.1.2 Polynomial Generator

The polynomial generator affords the greatest flexibility within the testbed. It can generate poly-
nomials of degrees two through six with as many as fifteen variables. Any of those variables can
be continous or categorical, and categorical variables can have an arbitrary number of levels. It is
based on work by McDaniel and Ankenman [14] in which they develop a method for randomly
generating polynomial functions. Their goal was to compare how different experimental design
strategies worked as measured by how well a fitted surface based on the design models the true
response. Their approach does not allow for direct control of the true response functions, but it
does enable probabilistic control of characteristics such as response range and maximum number
of stationary points.

Following McDaniel and Ankenmans’s approach, the following characteristics can be con-
trolled:

Effect sparcity refers to the fraction of factors being considered that appear in at least one term
of the generated polynomial function. The user controls this by defining a range on the
number of factors that could potentially appear in the definition of the polynomial surface.
The algorithm randomly chooses some number of factors within that range.

Bumpiness refers to the prevalence of stationary points (maxima, minima, and inflection points)
in the polynomial surface. This feature is not directly controlled by the user, but it is affected
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by effect heredity, described below.

Response range describes the range of operability over which values of the response are defined,
as established by lower and upper bounds on each factor. A range for the response is specified
and is used to scale the polynomial response over the region of operability. This approach
cannot guarantee that all response values are within the specified range, but it can ensure that
most of the response range is within the specified targets.

Flatness is the extent to which local deviations in the polynomial surface are small with respect
to the specified response range. It is specified by a scalar that controls the depth of local
maxima and minima.

Effect heredity refers to the relationship between lower and higher order effects. The user estab-
lishes this by defining two sets of conditional probabilities. One set is the probability that a
given term will appear provided its constituent factors appear in terms one order lower. The
second set is the probability that a given term will appear provided its constituent factors do
not appear in terms one order lower. This can be done for all main effects up to order six and
for interaction terms up to order three.

Random error is included to represent the noise usually present in physical experiments, and the
appropriate error distribution must be directly specified by the user. Since we are focused on
(deterministic) computational experiments, we do not consider random error in this study.

For our numerical experiments, we use a 19-term fourth order polynomial. It has four param-
eters, two of which are continuous and two of which are discrete. The x3 and x4 are continuous
variables that fall between 0 and 100, and x1 and x2 are discrete variables that have three levels,
namely 20, 50, and 80. The polynomial is given by the following:

f (x) = 53.3108+0.184901x1−5.02914∗10−6x3
1 +7.72522∗10−8x4

1−
0.0870775x2−0.106959x3 +7.98772∗10−6x3

3 +0.00242482x4 +
1.32851∗10−6x3

4−0.00146393x1x2−0.00301588x1x3−
0.00272291x1x4 +0.0017004x2x3 +0.0038428x2x4−0.000198969x3x4 +
1.86025∗10−5x1x2x3−1.88719∗10−6x1x2x4 +2.50923∗10−5x1x3x4−
5.62199∗10−5x2x3x4

3.2 Sample Design

The accuracy of a response surface surrogate can be affected by the number of data points used to
build it as well as how those points are chosen. Therefore, we vary the number and design of build
points in our numerical experiments. All designs are based on Latin Hypercube designs (LHD)
of the parameter space. We define n to be the number of LHD runs per qualitative level of the
categorical variables and m to be the number of discrete levels (or combinations of levels). The
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total number of points used to build each surrogate is mn. We consider n = 10,20,40,80, and the
sample design for each training set is constructed in three different ways.

Standard Latin Hypercube In this approach, one Latin Hypercube design of size mn is generated
over all of the continuous parameters. It is then randomly split it into m groups of n runs,
and each group is assigned a qualitative level of the categorical variables.

k Latin Hypercube In this approach, a separate Latin Hypercube design is generated for every
given level of categorical variables. That is, we generate m independent Latin hypercube
designs, each of size n and corresponding to one qualitative level.

Sliced Latin Hypercube This approach is based on recent work by Qian [16]. This design is a
Latin Hypercube for the continuous factors and is sliced into groups of smaller Latin Hyper-
cube designs associated with different categorical levels. In this case, we generate a sliced
Latin hypercube design with m slices, where each slice of n runs corresponds to one qualita-
tive level.

Because of the randomness associated with the LHS samples, we generate 10 replicate training
sets for each combination of n and design type.

3.3 Comparison Metrics

Evaluating the performance of computational methods can be challenging, particularly with regard
to the accuracy of the method. This is because the accuracy required for different applications
of the method can vary. In this study, our primary focus is on gaining an understanding of the
accuracy of mixed variable surrogates relative to each other, so we use a relatively fine-grained
metric. In particular, we use mean squared error between surrogate predictions and true function
values over a set of given points. For every replication of a given n and training design type, the
mean squared errors (MSE) are calculated based on a testing set using a Latin hypercube design
with 200 samples for each qualitative level. We then compare the mean and spread of the errors.
Lower values of these quantities constitute better performance.
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Chapter 4

Results

We present the results of our evaluation of the surrogate approaches presented in Chapter 2. Specif-
ically, we compared the results of TGP, ACOSSO, and the Gaussian process model with the in-
dividual kriging, exchangeable correlation, multiplicative correlation, and unrestricted correlation
functions. We do not present the results of categorical regression because the individual kriging
approach is essentially that: it calculates a separate surrogate model for each categorical level. We
applied these different methods to the test functions described in Chapter 3, comparing the results
over different sample sizes of the sample designs presented in Section 3.2.

4.1 Test Function 2

We started by investigating Test Function 2 which has two continuous variables and one discrete
variable with five levels. The results are shown in the following figures. These figures display
boxplots based on 10 realizations of n samples per discrete level, where n is 10, 20, 40, or 80.
The Y axis is the mean squared error (MSE) of the surrogate construction. The surrogates in all
of these plots were constructed using sliced LHD designs. The Gaussian correlation function in
(2.2.13) for the quantitative factors is used in the IK, EC, MC and UC methods. Figures 4.1-4.4
give the boxplots of the MSEs of the four methods for n = 10,20,40,80. NOTE: the Y-axis scale
is different on all of the four of theses Figures 4.1-4.4. Ideally, it would be nice to see the MSE
plotted on the same scale so that it is easy to see the decrease in error as a function of the number
of build samples. However, the MSE varied so dramatically for some of these results that keeping
an MSE scale to allow for plotting maximum MSE values would result in the reader not seeing the
differences in situations where the MSE was low. Thus, we have a different MSE scale on each
plot.

Overall, ACOSSO does very well on this function and outperforms the other methods, espe-
cially at the smaller sample levels of n = 10 and n = 20. For the four GP correlation schemes, the
EC, MC and UC methods outperform the IK method.

Generally, we found that sample design type (e.g. standard Latin Hypercube, kLHD, or sliced
LHD) did not have a large effect on the MSE. Most of the results we will present in this report used
the sliced LHD. However, there were some cases where the design did appear to make a difference.
For example, TGP performed better for test function 2 with LHD, and the Gaussian process with
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Figure 4.1. Test Function 2. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 10 using the
sliced LHD scheme.
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Figure 4.2. Boxplots of the MSEs for the TGP, ACOSSO, IK,
EC, MC and UC methods with n = 20 using the sliced LHD
scheme.
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Figure 4.3. Test Function 2. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 40 using the
sliced LHD scheme.
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Figure 4.4. Test Function 2. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 80 using the
sliced LHD scheme.
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the specialized correlation functions generally performed worse with LHD. Figure 4.5 shows the
results of the LHD designs. Note that the MSE values for the EC correlation were so large, with a
median MSE of 20,483, that they were omitted from this figure for scaling purposes.

Figure 4.5. Test Function 2. Boxplots of the MSEs for the TGP,
ACOSSO, IK, MC and UC methods with n = 80 using the standard
LHD scheme.

Finally, we compared the Gaussian correlation function with the compactly supported Wend-
land correlation (2.2.15). Figure 4.6 shows a comparison of the MSE for the n = 20 case, using
sliced lHD. For this particular test problem, the compact support does not appear to offer any
advantage, and its performance is a little worse. In summary for Test Function 2: ACOSSO per-
formed the best overall, the GP variations with IK, EC, MC and UC methods also performed well
especially at n = 40 and n = 80, the UC method did not perform well with a standard LHD de-
sign, and the GP variations performed slightly better with a Gaussian vs. a Wendland correlation
function.

4.2 Goldstein-Price

The Goldstein-Price results are shown in the following figures. Recall that the Goldstein-Price
function has two variables, one of which we treated as a discrete variable and one of which we
treated as continuous. This function varies by five orders of magnitude over the domain we chose,
so we performed the surrogate construction in log space and the error is presented in log space.
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Figure 4.6. Test Function 2. Boxplots of the MSEs for the TGP,
ACOSSO, IK, MC and UC methods with n = 20 using Gaussian
vs. Wendland correlations.
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Figures 4.7-4.10 give the boxplots of the MSEs of the four methods for n = 10,20,40,80. In
these figures, the Y axis is the mean squared error of the surrogate, but remember that the surrogate
is constructed in log space so these are errors in log space. The surrogates in all of these plots were
constructed using sliced LHD designs. For the Gaussian process model, the four variations of IK,
EC, MC and UC methods all used the compact support Wendland correlation function in (2.2.15).
For the Goldstein-Price function, the compactly supported correlation performed better than the
Gaussian correlation function. For example, the average MSE for the UC method built on the
n = 80 level was 9.22E-7 for the compact support correlation function while the average MSE for
this same method and sample size was 1.05E-2 using the Gaussian correlation function. For this
reason, we present the results using the compactly supported correlation function.

Overall, the variations of the Gaussian process model do very well on this function. ACOSSO
also performs well, and the mean MSE from ACOSSO is close to the mean from the various GP
methods. However, the variability of the ACOSSO results is slightly larger, as shown in Fig-
ures 4.7-4.10. Note that TGP has larger MSE at all sample levels. However, when we performed
the surrogate construction in the original space without taking the logarithm of the Goldstein-Price
function, TGP outperformed the other methods. This may be due to the ability of TGP to identify
different regions of the space with different properties (e.g. the scale of the Goldstein-Price func-
tion is much smaller in the center of the domain than at the edges of the domain we are using for
this case study).

Figure 4.7. Goldstein-Price. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 10 using the
sliced LHD scheme.
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Figure 4.8. Goldstein-Price. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 20 using the
sliced LHD scheme.
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Figure 4.9. Goldstein-Price. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 40 using the
sliced LHD scheme.
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Figure 4.10. Goldstein-Price. Boxplots of the MSEs for the TGP,
ACOSSO, IK, EC, MC and UC methods with n = 80 using the
sliced LHD scheme.
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4.3 Fourth Order Polynomial

The fourth order polynomial is defined in Equation 3.1.1. As mentioned, this function has 19
terms, some up to fourth order, and significant interaction terms. There are four variables; the
range of the two quantitative factors is [0,100] and the two qualitative factors x3 and x4 have three
levels, 20,50,80 each.

The results for the fourth order polynomial are shown in Figures 4.11-4.14. These figures show
that the Gaussian processes with the various correlation functions such as EC, MC, etc. perform
well. Interestingly, ACOSSO does not seem to improve, even with the addition of points. That
is, the average MSE for ACOSSO with n = 10 is 1.5, while the average MSE for ACOSSO with
n = 80 is 1.4. In contrast, the other approaches all improve the MSE by eight orders of magnitude.
We speculate that this is due to ACOSSO struggling when there is significant interaction between
variables: it is trying to construct its response as the aggregation of separable functions which may
not capture the interactions well.

Figure 4.11. Fourth-order Polynomial. Boxplots of the MSEs
for the TGP, ACOSSO, IK, EC, MC and UC methods with n = 10
using the sliced LHD scheme.
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Figure 4.12. Fourth-order Polynomial. Boxplots of the MSEs
for the TGP, ACOSSO, IK, EC, MC and UC methods with n = 20
using the sliced LHD scheme.
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Figure 4.13. Fourth-order Polynomial. Boxplots of the MSEs
for the TGP, ACOSSO, IK, EC, MC and UC methods with n = 40
using the sliced LHD scheme.
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Figure 4.14. Fourth-order Polynomial. Boxplots of the MSEs
for the TGP, ACOSSO, IK, EC, MC and UC methods with n = 80
using the sliced LHD scheme.
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Chapter 5

Summary

This report investigated four main classes of surrogate methods which can handle “mixed” discrete
and continuous variables: adaptive smoothing splines, Gaussian processes with special correlation
functions, and Treed Gaussian processes . We were careful to use test problems which were chal-
lenging but tractable for repeated comparison runs. We did extensive comparisons, varying the
number of build points used in the surrogate construction, varying the sample designs used, and
building multiple surrogates of a given type so that we could compute statistics of the response to
give fair comparisons (e.g. so we would not be misled by constructing only one surrogate on one
set of build points).

Overall, all methods appear viable for small numbers of categorical variables with a few levels.
ACOSSO and the Gaussian processes with special correlation functions generally performed well.
There were subtle differences between ACOSSO and the GPs, but these two approaches both per-
formed better than TGP, at least for Test Function 2 and the Goldstein-Price function. ACOSSO
performed poorly for the fourth-order polynomial with significant interactions, but ACOSSO per-
formed best for separable functions especially at small sample sizes. The GP with special cor-
relation functions appears the most consistent of all the methods. However, the GP with special
correlations was the most sensitive to build design and did not perform as well with a plain LHD
design: the special correlation GP works best with kLHD or sliced LHD. TGP success depends
on being able to identify splits where individual GPs work well in separate parts of the domain.
TGP performs well on poorly scaled functions, but we found it does not perform well when the
continuous variables are not predictive for certain combinations of categorical variable levels. For
the fourth-order polynomial function that involves significant interaction terms, TGP performed
better than ACOSSO at higher number of build points (40 or 80 build points). This is to be ex-
pected because ACOSSO is constructed over separable functions and its performance may degrade
somewhat when significant interactions between variables are present.
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Appendix A

Additional Test Framework Functions

The first of the two remaining functions in the testbed has one categorical variable with five levels.
It also has one continuous variable which falls between the values of 0 and 1. This function has a
region where the responses at the different categorical levels are very similar. This will allow us to
evaluate how well the different surrogate approaches can resolve the different levels.

f (x) =


3.5(x2 +0.5)4 if x1 = 1
0.5(x2 +0.5)4 if x1 = 2
2.5(x2 +0.5)4 if x1 = 3
0.7(x2 +0.5)4 if x1 = 4

(x2 +0.5)4 if x1 = 5

Figure A.1. Test Function 1

The last function has an arbitrary number of variables. Furthermore, the number of continuous
variables relative to the number categorical variables is arbitrary as is the number of levels for each
categorical variables. This will allow us to test the scalability of the surrogate approaches with
respect to both the number of variables and the number of levels per categorical variable.

f (x) =
n

∑
i=1

(xi−1)4
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Figure A.2. Test Function 3
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Appendix B

Results of Scaling Studies

In addition to the evaluations described in the main body of this paper, we did some prelimi-
nary studies to assess the potential for scalability of these mixed-variable surrogate modeling ap-
proaches with respect to the number of discrete/categorical variables and to the number of levels
per variable. These studies confirmed that the curse of dimensionality affects all of these ap-
proaches and that there is no clear path to scalability. However, we include the results in this
appendix in the interest of completeness.

As a baseline, we include results for categorical regression[15]. Until recently, this was the
only option in the literature for constructing response surface surrogates with mixed variables.
Since we did not describe this method in the main body of the paper, we present it briefly here.
In short, this approach constructs a separate response surface over the continuous parameters for
each categorical level. More formally, it is described using indicator functions as in the following
simple example:

Y = β0 +β1X1 +β2X2,

where X1 is continuous, X2 is binary and

Y = β0 +β1X1 for X2 = 0 and (B.0.1)
Y = β0 +β1X1 +β2 for X2 = 1 (B.0.2)

While intuitive and straightforward to implement, categorical regression is computationally ex-
pensive. It is necessary to collect data at enough samples over the continuous variables for each
discrete combination for an accurate regression function. Therefore, as the number of discrete
variables and/or the number of categorical levels per discrete variable increases, there is a combi-
natorial explosion in the number of simulations that must be run. We use categorical regression as
a baseline for benchmarking the other three mixed variable surrogate approaches, but we consider
it feasible to use in practice only for very small problems.

For our scalability studies, we used the following function from our testbed:

f (x) =
n

∑
i=1

(xi−1)4.

Our initial test had four variables, two of which were continuous with values between 0 and 2
and two if which were categorical with three levels (0, 1, and 2). The mean squared errors for
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the different surrogate approaches with different numbers of build points are shown in Figure B.1.
From this we can see that even with only four variables, the performance of categorical regression

Figure B.1. This figure shows mean squared error values for a
variety of mixed variable surrogate approaches with different num-
bers of build points. The problem has two continuous variables and
two categorical variables. The poor performance of categorical re-
gression demonstrates that scalability is extremely limited even for
small problems.

.

is generally poor and does not improve significantly with increasing number of build points. TGP
and ACOSSO performed reasonably well, so we completed some follow-on studies using just these
two approaches.

We next considered scalability with respect to the number of levels per categorical variable.
Tables B.1 and B.2 show the results for increasing the number of categorical levels from three to
five. In both cases, the methods scale better with respect to the number of categorical variables
than with respect to the number of categorical levels. This is reflected in larger increases in mean
squared error as the number of categorical levels increases versus as the number of categorical
variables increases. Additionally, increases the number of build points improves the mean squared
error at a noticeably faster rate for larger numbers of categorical variables than for larger numbers
of categorical levels.
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Table B.1. This table shows the mean squared error for TGP
given different numbers of categorical variables, different numbers
of categorical levels per variable, and different numbers of build
points. Scalability deteriorates faster as the number of categorical
levels increases.

number of
build points

2 categorical,
3 levels

2 categorical,
5 levels

5 categorical,
3 levels

5 categorical,
5 levels

50 0.7217199 119.75 1.35 319.22
100 0.03391995 57.15 0.79 300.08
150 0.01617074 25.94 0.87 272.76
200 0.00631333 25.26 0.72 265.96
300 4.45∗10−5 17.91 0.52 231.41
500 1.74∗10−6 1.27 0.32 223.68

Table B.2. This table shows the mean squared error for ACOSSO
given different numbers of categorical variables, different numbers
of categorical levels per variable, and different numbers of build
points. Scalability deteriorates faster as the number of categorical
levels increases.

number of
build points

2 categorical,
3 levels

2 categorical,
5 levels

5 categorical,
3 levels

5 categorical,
5 levels

50 1.20∗10−4 8.15∗10−4 2.24∗10−4 2.56∗10−1

100 9.31∗10−6 1.55∗10−3 6.27∗10−6 4.06∗10−6

150 1.50∗10−6 1.34∗10−3 2.01∗10−6 2.56∗10−4

200 1.75∗10−7 3.20∗10−6 6.97∗10−7 1.99∗10−3

300 3.17∗10−7 4.68∗10−5 1.31∗10−7 5.24∗10−5

500 7.69∗10−8 3.08∗10−4 8.56∗10−8 2.14∗10−5
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